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The energy bands of ordered CaCd and CaTl have been calculated by the nonrelativistic aug­
mented plane wave (APW) method. The electron structure in the system CaCdi_zTl.r is deduced 
from these calculations by using the rigid band model for the phases with O 'C z^l. The band 
structures of CaCd and CaTl are similar to the valence bands of other phases of the CsCl-type. 
From the energy eigenvalues the electronic density of states curve, the partial densities of states 
curves, and the Fermi energy have been obtained. For states near the Fermi surface the spin density 
at the position of the Cd- and Tl-nuclei has been determined.

The Knight shift K s of the 113Cd-NMR and the 205T1-NMR in the system CaCdi-^Tlx has been 
calculated as a function of x. The slope of the curve K s (x) for the Cd-NMR is equal for experi­
mental and theoretical results. The absolute value of the calculated Knight shift is about a factor of 
1.4 too small. Only the direct term to the Knight shift has been calculated. Relativistic effects have 
been included by a scale factor. It has not been possible to explain the shape of the function ( 2 ) 
for the Tl-NMR, since a full relativistic APW calculation is necessary for CaTl.

Introduction

In the course of investigations of ternary inter- 
metallic compounds the quasibinary system 
C aC di.zT lj has been studied by X-ray diffraction. 
The alloys of this system form homogeneous solid 
solutions for all concentrations x: 0  ^  x 1. They 
crystallize with the space group O/^-PmSm and 
one formula unit per unit cell (CsCl-type). Further­
more, concentration dependent nuclear magnetic 
resonance (NMR) measurements were carried out on 
these alloys using 113Cd- and 20oTl-nuclei as NMR 
probes. It was found that the Knight shift K s of the 
Cd- and Tl-NMR varies continuously as a function 
of x. However, the functions K  ̂=  f (x )  for the Cd- 
and Tl-NMR shifts have different slopes 1. The pur­
pose of this paper is a theoretical approach to the 
interpretation of the experimental results.

Since the Knight shift K s depends on the wave 
function density at the nuclei and the density of 
states at the Fermi energy, band structure calcula­
tions for an interpretation of K s, =  f ( x ) are desir­
able. The band structure calculations for the bound­
ary phases CaCd and CaTl have been done using 
the non-relativistic augmented plane wave (APW) 
m ethod2,3. From the calculated energy eigenvalues 
the Fermi energies and the density of states have
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been determined. Finally, the Knight shift is analy­
sed. For the phases CaCd and CaTl the relativistic 
contribution to K s is estimated. To analyse K s along 
the quasibinary section CaCd^ -^Tl^, 0  ^  x <: 1 , 
the rigid band model 4 is used.

The band structures of several intermetallic com­
pounds of the CsCl-type have already been studied 
using the APW method 5~8. The results of these 
calculations were compared with optical data, with 
measurements of the specific heats of the electrons, 
and with the de Haas-van Alphen experiments. To 
calculate the Knight sh ift9-11, mostly the ortho- 
gonalized plane wave method is used in the litera­
ture. The Knight shift in alloys was studied theo­
retically as a function of the mixing proportion by 
applying the rigid band m odel12,13 or the theory of 
the Friedel oscillations 14 ~16.

The Band Structure of CaCd and CaTl 
in the Non-Relativistic APW  Approximation

1. Potential and A PW  Wave Functions

For the calculation of energy states in solids by 
the APW method, the real lattice potential for the 
electrons in the crystals is approximated by the so- 
called muffin-tin potential. In a model assumption 
the crystal is separated into two regions (Figure 1). 
In region I, spherical symmetric potentials are de­
fined around the sites of the atomic nuclei. These 
atomic spheres do not overlap. The potential be­
tween these spheres in region II is taken to be a
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constant one (APW constant). Because of the high 
symmetry of the crystals and the flat real potential 
between the spheres, the muffin-tin potentials is a

Fig. 1. Muffin-tin potential in the (111) plane for the cubic 
primitive structure. In region I the potentials are spherically 
symmetric around the positions of the nuclei r v . In region II 

the potential is a constant one.

good approximation for metals and alloys. Region I 
is chosen as large as possible and, therefore, the 
atomic spheres touch each other in the direction of 
nearest neighbours. The radii of the atomic spheres 
of region I are called APW radii R r .

The muffin-tin potentials have been obtained by
a) the coulomb potentials due to the nuclei and the 
electrons of the central atom, b) by the spherically 
symmetric part of the coulomb potentials due to the 
14 nearest neighbours in the CsCl structure, and
c) by the exchange potentials. The exchange poten­
tials are calculated in the free electron exchange

approximation of Slater 17 (Hartree-Fock-Slater ap­
proximation) .

If the zero of the energy scale is shifted to the 
APW constant, the constant potential in region II 
is zero.

In the muffin-tin approximation, the wave func­
tions in region II are plane waves

<Pm(r) = exp  ( i k ( r}  , ( l )

fcj =  fc +  g , . (2)

k  is the wave vector of the first Brillouin zone, g : 
is a reciprocal lattice vector. Inside the sphere v the 
wave functions can be expanded in spherical har­
monics Yjm:

oc /
<Pa(T) =  2  I  a(e^Ylm{Q)ui{Q,E) . (3)

1 = 0  771 =  — /

9 =  r - r , ,  (4)

Q =  q/ q - (5)
The radial wave function U[(o,E) is the solution of 
the radial Schrödinger equation in the muffin-tin 
potential with the angular momentum I. E is the 
energy of the state k  being investigated. In the 
APW scheme proposed by Slater 18, the function

(pn in region I;
it (6 )(pm in region 11

is made continuous at the boundary of region I and 
II by a proper choice of the coefficients a\m • Ex­
panding the plane wave also in spherical harmonics 
and in spherical Bessel-functions j; ,  it follows:

aim =  4 n  exp ( i k ; r,.} i1 j P (A- R,.) Y * J k t) /ue(Ry, E) .

(7)
The continuous function (pi is called an augmented 
plane wave and is shown in Figure 2. The wave

Fig. 2. Muffin-tin potential and APW  function.
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function y>k(T) of an electron in the crystal with 
wave vektor k  is regarded as an expansion of the 
APW functions:

V>*(r) =  (1 jN u ) Z  Vicpi{r) (S)

The coefficients vi =  v are determined by a 
variation procedure. Nu is the normalisation con­
stant and the summation is taken over the reciprocal 
lattice.

Besides the energy eigenvalues, the charge outside 
and inside the APW spheres can be calculated 19. 
To do so, the square of the wave function is inte­
grated over region II and I. For a crystal with a 
cubic primitive unit cell, it follows 3

O

A*
(9)

and

ith

Qrl =
o

Nk
2 1 u v , d $ i , ,  
ij

(10)

(11)

respectively.
A a , and I„i are abbreviations for the following 
expressions

Aij — djj exp {i k i j  r v} j x [kjj R v) k'i •,

f(v)=
i j l  n (21 +  1) ji(kj Rv)Pi(ki%j) 

•exp { i  kij r v} ,

Q U[( o, E )
R v u i(R r , E)

ilv
do

(11a)

( H b )

(11c)

kjj — kj.

Q  is the volume of the unit cell, 6^ is the Kronecker 
symbol and Pi is the Legendre polynom.

If the normalisation constant Nk is chosen that

Q oM +  <?fn -  1 , (12)

we can interprete the APW charges Qin and Q out in 
units of the electron charge as fraction of the charge 
of the state xpk inside and outside the atomic spheres. 
Inside the sphere Qvi represents the fractional charge 
associated with the angular momentum /. It is 
shown below that the Knight shift is approximately 
a function of the charge .

2. Computational Details for the A P W  Calculations

Both phases, CaCd and CaTl, belong to the CsCl- 
type. The first Brillouin zone is shown in Figure 3.

For the free atoms with the electron configuration 
of Table 1, the muffin-tin potential was constructed

Table 1. Values of parameters involved in the APW calcula­
tion for CaCd and CaTl.

Alloy CaCd CaTl
Structure type CsCl CsCl
Lattice parameter 1 a 7.2521 a0 7.2793 a0
Volume of the unit cell Q 381.41 a03 385.72 a03
Electron configuration Ca: 3p6 4s2 Ca: 3p6 4s2

Cd: 4d10 5s2 Tl: 5d10 6s2 6p1
APW constant — 0.8635 Ry -0 .9 2 0 2  Ry
APW sphere radii R v Ca: 3.158 a0 Ca: 3.004 a0

Cd: 3.004 a0 Tl: 3.158 a0

1 a0 =  0.5292 Ä is the Bohr radius.

using the self-consistent Hartree-Fock-Slater wave 
functions of Herman and Skillman 20. The radii of 
the APW spheres and the constant potential between 
the spheres are given by the intersection of the single 
potentials in the [111]-direction. In Table 1, the 
values of the different parameters involved in the 
APW calculation are given.

The summation of Eq. (8) is evaluated including 
all wave vektors ki  satisfying kt ^  &raax, where A:max 
is given by a condition proposed by Switendick 3

(13)

where Rs is the smaller APW radius of the different 
atomic spheres. For a general k  point the condition 
(13) implicates 50 — 60 basis functions. Instead of 
Eq. (13), the weaker condition kmlLXRs =  5 changes 
the energy values up to 0.005 Ry for states at the 
Fermi surface.

In the summation over I in Eq. (3) all values of
I up to /max =  5 were included. For states near the
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Fermi energy, an upper boundary of /max = 12 
changes the energy values less than 0.001 Ry. The 
APW charges Qyi vary under the same conditions 
less than 4%. This variation can be neglected for 
the analysis of the Knight shift data.

3. Bands of CaCd and CaTl

The APW calculations show that in CaCd and 
CaTl the bands of the core electrons and the valence 
electrons do not overlap. Therefore, in the following 
only the valence and conduction bands are con­
sidered.

The eigenvalues of these bands have been ob­
tained for 35 non-equivalent wave vectors k  in the 
reduced zone, corresponding to 512 k  points in the 
full Brillouin zone. In CaCd six eigenvalues were 
determined for each k .  Assuming that the conduc­
tion bands of CaCd and CaTl are very similar in

the non-relativistic APW calculation, we have de­
termined only four bands in CaTl.

In Tables A l and A2, the energy values and the 
multiplicities M (kg) are given for the 35 k  vectors 
k f . M ( k t) is the number of states having the same 
energy eigenvalue as k t . In Figs. 4 and 5 the bands 
are shown along the principal symmetry lines (see 
Figure 3 ). Throughout this work the APW scale has 
been used. The APW constants given in Table 1 
have to be added to all given energy values.

The calculated band structures of CaCd and CaTl 
are qualitatively very similar. Only the points M-' 
and Ro are lowered in CaTl. Because a relativistic 
APW calculation is necessary for CaTl. the follow­
ing discussion is restricted to the bands of CaCd.

For a detailed discussion of the band shapes it is 
useful to know the APW charges Q If Qca.i is 
much greater for one band than the other in Eq.

Table A 1. Energy bands of CaCd in the non-relativistic APW approximation. The wave vectors k f  are given in units of 
.t/4 a. M ( k f )  is the multiplicity of the state kf . To all energy values given in Ry the APW constant of —0.8635 Ry has to

be added.

kt M  (kt) 1st band 2nd band 3rd band 4th band 5th band 6th band

0 0 0 1 -0 .0 5 0 2 0.3830 0.3830 0.5072 0.5072 0.5072
0 1 0 6 -0 .0 3 7 4 0.3789 0.3859 0.5020 0.5020 0.5154
0 2 0 6 0.0003 0.3384 0.3918 0.4740 0.4740 0.5163
0 3 0 6 0.0607 0.2526 0.3974 0.4520 0.4520 0.5166
0 4 0 3 0.1191 0.1803 0.3981 0.4440 0.4440 0.5144
1 1 0 12 -0 .0 2 4 8 0.3795 0.3832 0.4809 0.4950 0.5109
1 2 0 24 0.0123 0.3459 0.3904 0.4536 0.4747 0.5100
1 3 0 24 0.0712 0.2623 0.3999 0.4420 0.4558 0.5100
1 4 0 12 0.1258 0.1947 0.4029 0.4347 0.4492 0.5104
2 2 0 12 0.0474 0.3575 0.3678 0.4365 0.4742 0.4985
2 3 0 24 0.1013 0.2893 0.3872 0.4292 0.4652 0.4961
2 4 0 12 0.1455 0.2356 0.4085 0.4142 0.4613 0.4973
3 3 0 12 0.1447 0.3169 0.3532 0.4244 0.4772 0.4857
3 4 0 12 0.1735 0.2959 0.3683 0.4117 0.4750 0.4833
4 4 0 3 0.1906 0.3460 0.3460 0.3852 0.4800 0.4800
1 1 1 8 -0 .0 1 2 4 0.3830 0.3830 0.4696 0.4940 0.4940
1 2 1 24 0.0241 0.3520 0.3907 0.4542 0.4624 0.4987
1 3 1 24 0.0814 0.2720 0.4012 0.4366 0.4582 0.5013
1 4 1 12 0.1327 0.2083 0.4118 0.4225 0.4594 0.5027
2 2 1 24 0.0583 0.3660 0.3691 0.4409 0.4607 0.4832
2 3 1 48 0.1110 0.2984 0.3857 0.4328 0.4705 0.4860
2 4 1 24 0.1531 0.2467 0.3951 0.4242 0.4777 0.4864
3 3 1 24 0.1535 0.3247 0.3481 0.4285 0 .4 i 74 0.4865
3 4 1 24 0.1823 0.3004 0.3592 0.4192 0.4894 0.4909
4 4 1 6 0.1996 0.3380 0.3380 0.4006 0.4980 0.4980
2 2 2 8 0.0900 0.3720 0.3720 0.4352 0.4600 0.4600
2 3 2 24 0.1384 0.3192 0.3721 0.4488 0.4602 0.4820
2 4 2 12 0.1755 0.2752 0.3720 0.4522 0.4743 0.5068
3 3 2 24 0.1789 0.3359 0.3374 0.4509 0.4900 0.4900
3 4 2 24 0.2078 0.3076 0.3417 0.4505 0.4967 0.5339
4 4 2 6 0.2284 0.3220 0.3220 0.4457 0.5450 0.5682
3 3 3 8 0.2175 0.3270 0.3270 0.4985 0.4985 0.5080
3 4 3 12 0.2454 0.3088 0.3231 0.5005 0.5098 0.5244
4 4 3 6 0.2730 0.3080 0.3080 0.4900 0.5071 0.5460
4 4 4 1 0.3012 0.3012 0.3012 0.4431 0.4431 0.4431
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Table A 2. Energy bands of CaTl in the non-relativistic APW 
approximation. The wave vectors k (  are given in units of 
ji/ 4  a.  M ( k t) is the multiplicity of the state k t . To all 
energy values given in Ry the APW constant of —0.9202 Ry 

has to be added.

kt M(kt) 1st band 2nd band 3rd band 4th band

0 0 0 1 -0 .1 0 8 9 0.4170 0.4170 0.5605
0 1 0 6 -0 .0 9 6 5 0.4011 0.4196 0.5280
0 2 0 6 -0 .0 6 0 2 0.3272 0.4289 0.5020
0 3 0 6 -10.0044 0.2246 0.4354 0.4780
0 4 0 3 0.0391 0.1623 0.4355 0.4690
1 1 0 12 -0 .0 8 4 3 0.4010 0.4103 0.5048
1 2 0 24 -0 .0 4 8 7 0.3354 0.4170 0.4804
1 3 0 24 0,0057 0.2354 0.4303 0.4632
1 4 0 12 0.0468 0.1761 0.4436 0.4522
2 2 0 12 -0 .0 1 5 3 0.3528 0.3612 0.4692
2 3 0 24 0.0343 0.2662 0.3859 0.4605
2 4 0 12 0.0693 0.2150 0.4028 0.4488
3 3 0 12 0.0751 0.2991 0.3239 0.4510
3 4 0 12 0.1009 0.2709 0.3409 0.4360
4 4 0 3 0.1195 0.3090 0.3090 0.4115
1 1 1 8 -0 .0 7 2 4 0.4050 0.4050 0.4824
1 2 1 24 —0.0375 0.3431 0.4136 0.4711
1 3 1 24 -0.0156 0.2461 0.4285 0.4663
1 4 1 12 0.0548 0.1891 0.4398 0.4486
2 2 1 24 -0 .0 0 4 7 0.3629 0.3632 0.4648
2 3 1 48 0.0440 0.2757 0.3857 0.4674
2 4 1 24 0.0778 0.2253 0.3958 0.4584
3 3 1 24 0.0848 0.3081 0.3228 0.4589
3 4 1 24 0.1110 0.2758 0.3383 0.4471
4 4 1 6 0.1309 0.3070 0.3070 0.4274
2 2 2 8 0.0263 0.3680 0.3680 0.4321
2 3 2 24 0.0720 0.2988 0.3722 0.4692
2 4 2 12 0.1035 0.2530 0.3739 0.4850
3 3 2 24 0.1131 0.3204 0.3233 0.4717
3 4 2 24 0.1408 0.2860 0.3310 0.4822
4 4 2 6 0.1650 0.3020 0.3020 0.4751
3 3 3 8 0.1562 0.3170 0.3170 0.4573
3 4 3 12 0.1867 0.2939 0.3148 0.4467
4 4 3 6 0.2224 0.2950 0.2950 0.4071
4 4 4 1 0.2942 0.2942 0.2942 0.3154

(10), we shall call this band a p ■like band of Cd.
If two or more Qvi values are of the same order,
hybrid bands are obtained. Often electrons belong­
ing to atomic energy levels with the angular momen­
tum I form /-like bands in metals and alloys. In 
CaCd the lowest band in the energy range E ( r  x) to 
E ( X ± )  is a s-like band of Cd. The band is similar 
to the band of the free electron gas. Above E( X±)  
up to E (R 25') this s-like band is hybridized with a 
p-like band of Cd and a d-like band of Ca. Above 
E(R.25'),  CaCd has five d-like bands of Ca hybrid­
ized with s-like and p-like bands of Cd. Therefore, a 
broad valence band between — 0.05 Ry and 0.3 Ry 
results. Above this value five narrow bands in the 
range 0.3 — 0.5 Ry for CaCd appear. An exception 
are the states around the point X x . Near this point 
the second band is far below 0.3 Ry. These are the

only states with a measurable s portion Qca.o of 
Ca. The non-relativistic calculations in CaTl yield 
similar charge distributions.

Broad valence bands and narrow d-like bands are 
also characteristic for other intermetallic compounds 
with CsCl structure, such as /T-CuZn5, /T-NiAl6, 
/T -P d ln7, Y C u8, and Y Z n8, although the width and 
the degree of hybridization of the d-like bands are 
different for the individual alloys. In contrast to 
CaCd and CaTl, in all the phases cited above the 
d-like bands can be assigned to the d levels of the 
different elements, e. g. in /3-PdIn the s-like valence 
bands are hybridized with the 4d bands of P d 7. 
The mathematical reason for the analogy of Ca and 
a transition element in relation to the band structure 
is the similar shape of the logarithmic derivatives 
of the radial wave function u i ( Rv, E) j u {  ( Rr , E) 
with / = 0.1 and 2 as a function of E.

Density of States and Fermi Energy

The density of states n(E)  is defined as the num­
ber of electrons (or states with spin degeneration) 
per unit volume of the metal in the energy range 
J E  around E per unit range of energy. Histograms 
can be constructed for n(E)  using the energy values 
of the states given in Tables A l and A2 21> 22.

Because of the limited number of states k f being 
considered, the shape of the histograms depends on 
the energy intervals AE u sed21,22. For calculations 
done in this work we could not choose AE smaller 
than 0.03 Ry. It is averaged over six different den­
sity of states histograms. For convenience, in Figs. 
6 and 7 the densities of states N (E) per unit cell 
and per Ry are shown,

N { E ) = Q n ( E ) .  (14)

The density of states for CaCd has two broad peaks 
at about 0.0 and 0.15 Ry which are mainly due to 
the 4 s band of Cd. The third peak at about 0.36 Ry 
belongs predominantly to the d-like bands of Ca 
hybridized with the p-like bands of Cd. As the band 
structure, the shape of the density of states for CaCd 
is very similar to the corresponding curve for YZn. 
The density of states for CaTl has a broad peak at 
about 0.05 Ry due to the 5 s band of Tl. The second 
peak at about 0.3 Ry and the ascent at 0.43 Ry 
belong to the d-like bands of Ca hybridized with the 
p-like bands of Tl.

Besides the total density of states N ( E) , partial 
densities of states Nvi(E) were calculated. These



Fig. 4. Energy bands of CaCd for the directions in k  space given in
Figure 3.

X A P I M Z  X S  R A f l M T R

Fig. 5. Energy bands of CaTl for the directions in k  space given in
Figure 3.

Fig. 6. Density of states of CaCd given in electrons per unit cell and 
per Ry. N 0 is the density of states calculated from the free electron 
model. N  is the total density of states in the APW approximation. 7Vv, i 
are partial densities of states, which are a function of the atomic sphere 

r  and the angular momentum I.

N(E)

Fig. 7. Density of states of CaTl given in electrons per unit cell and 
per Ry. N 0 is the density of states calculated from the free electron 
model. TV is the total density of states in the APW approximation. N,,yi 
are partial densities of states, which are a function of the atomic sphere 

v  and the angular momentum I.
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densities depend on the angular momentum / and 
the atomic sphere v. The total density N (E) is the 
sum of the partial densities of states,

N ( E ) = 2 N vl( E ) + N 0 (15)

The main partial densities of states for CaCd and 
CaTl are shown in Figs. 6 and 7. Except 7V()Ut, all 
other partial densities of states are small compared 
to the plotted ones. The first two peaks of the total 
density of states of CaCd correspond to the maxi­
mum of the partial density of states A^d.o and the 
third peak of N( E)  corresponds to the maxima of 
-Vcd.l and Mca,2 • In CaTl the partial densities have 
a similar shape as in CaCd, but in CaTl the maxima 
of the partial densities Ati,i and AVa,2 are lying at 
the same energy value, whereas in CaCd the maxima 
of Ncd,i and Nc.a.,2 belong to different energy values.

To calculate the Fermi energy Ep , N (E) is inte­
grated over E from the lowest energy value £ ( / \ )  
up to the total number of electrons per unit cell 2,

[ N ( E ) d E  =  z .
E(I\ )

(16)

In our approximation we count the number of states 
given in Tables A l or A 2, respectively, from the 
lowest energy value up to the boundary z ,

<)LZ E t< E F
(17)

For CaCd,  ̂ is equal 4 and the energy value of 
jEV =  0.348 Ry is reached at the point kt =  .r (3 ,3 ,1 )/ 
(4a) in the third band, where M [ k t (0.348) ] is 24. 
For CaCd the Fermi energy lies in a range with 
large p partial density of states of Cd and large d 
partial density of Ca and small s partial density 
of Cd.

Knight Shift

1 . Calculation of the Knight Shift

For the theoretical discussion of the NMR mea­
surements, we assume that the Knight shift is 
given by the hyperfine contact term 23

Z p ß ( l v * ( n ) l 2)r (18)

although K sd is only the direct contribution to . 
XP is the Pauli spin susceptibility per unit volume. 
(\yj k {ry)\2)Y is the averaged direct spin density at 
the nuclear site I*,, due to the conduction electrons 
at the Fermi surface.

To calculate the square of the APW wave func­
tion, one starts with a spherical averaged radial 
charge density of . By integrating r2 xp xp* over 
solid angles within each of the APW spheres 3

O

/Vfc i ij
Quiig, E) 

Ry U[{Ry, E )
(19)

follows.
The square of the wave function at the nuclear 

position is given by

ll'k (f\ ) !2 = lim

With

one gets:

Gvi =  lim uiiq, E) 
R y U[(Ry, E)

| y k { r y) ]2 =  Q y0 Gro / / ;

(20)

(21)

(2 2 )

for G,,i =  0 for / 4= 0. Only the s part of the wave 
function is unequal zero at the nuclear site.

For the calculation of the susceptibility / j >, the 
Pauli expression 24 for non-interacting electrons was 
chosen,

* p = j u B 2n(E),  (23)

where //g is the Bohr magneton.
Equations (22), (23) and (14) yield a theoreti­

cal expression for K s as a function of the s-part of 
the APW charge

8.7
V t f ( £ F)<0oG $>//S>)F. (24)

Different regions of the Fermi surface give very 
different average electron densities at the nuclear 
position. Therefore, the evaluation of the mean value 
requires calculations at a large number of h  points. 
The k  states at the Fermi surface are given by the 
intersection points of the curves E =  E p and 
E = E(k)  for different directions in k  space. The 
curve E =  E ( k ) was constructed from the energy 
values given in Tables A l and A2, respectively, 
using the boundary conditions for the shape of the 
energy bands. For the obtained k  points at the 
Fermi surface, the energies, the APW charges, the 
values of /*  and G * and the mean values of 
QvoG'to/IrQ'were calculated. Table 2 shows an ex­
ample of the k2 =  7i/4<a plane for two different Fermi 
energies. The calculated values Ks,th are given in 
Table 3. The values of i^s.th are about two or three 
times smaller than the observed Knight shift K s .
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Table 2. Electron states near the Fermi surface in the plane k z =  7ij4 a of the k  space for two different Fermi energies Ef  . 
The electron states are described by the k  vektor in units of jt/4 a, by the energy value (in R y), and by the band index. 
The APW charges in the atomic spheres v and outside the spheres are listed too. The Fermi contact terms for these states 
are given by K * = 2 .2 3 5 X 1 0 “ 4 iV(#F) (?cd.o G/I and the direct part of the Knight shift by the mean value of Kk.
a) £ f= 0 .3 6 8  Ry and N ( E f )  =34  electrons per unit cell and per Ry.
b) £ f  =  0.348 Ry and N ( E f)  = 2 9  electrons per unit cell and per Ry.

a
k

energy
(band) V Qv.  0

APW-charges

Qv.l  Qv,  2 Qont /  1 G 1 A'txlO2

0.3702 Ca 0.0110 0.0460 0.5773
0.0 1.5 1.0 (2nd band) Cd 0.0101 0.0720 0.0307 0.2502 1.972 35.24 0.137

0.3718 Ca 0.0125 0.0532 0.5697
1.0 1.6 1.0 (2nd band) Cd 0.0047 0.0805 0.0287 0.2474 1.952 35.60 0.066

0.3660 Ca 0.0479 0.0219 0.5362
2.0 2.0 1.0 (2nd band) Cd 0.0352 0.0997 0.0246 0.2278 2.000 34.82 0.468

0.3691 Ca 0.0587 0.0219 0.4936
2.0 2,0 1.0 (3rd band) Cd 0.0157 0.1153 0.0220 0.2645 2.137 34.84 0.196

0.3610 Ca 0.0097 0.1011 0.3424
3.0 2.6 1.0 (3rd band) Cd 0.0049 0.2117 0.0140 0.3095 2.006 34.42 0.064

0.3703 Ca 0.0 0.0764 0.4080
4.0 2.7 1.0 (3rd band) Cd 0.0028 0.2105 0.0115 0.2830 2.055 35.28 0.037

b

k
energy
(band) r Qv. 0

APW-charges

Qr.l  Qr,2 (?out Z1 G 1 K k  10;

0.3519 Ca 0.0345 0.0634 0.4417
0.0 1.9 1.0 (2nd band) Cd 0.0304 0.1126 0.0283 0.2861 2.034 33.75 0.326

0.3457 Ca 0.0423 0.0705 0.3827
1.0 2.1 1.0 (2nd band) Cd 0.0332 0.1345 0.0291 0.3037 1.844 33.28 0.388

0.3459 Ca 0.0412 0.0648 0.4070
2.0 0.2 1.0 (2nd band) Cd 0.0326 0.1263 0.0292 0.2957 1.883 33.20 0.372

0.3492 Ca 0.0543 0.0522 0.3967
2.0 2.3 1.0 (2nd band) Cd 0.0398 0.1442 0.0229 0.2839 1.969 33.35 0.436

0.3481 Ca 0.0999 0.0481 0.2954
3.0 3.0 1.0 (3rd band) Cd 0.0D01 0.1966 0.0144 0.3410 1.923 33.17 0.001

0.3570 Ca 0.0023 0.1063 0.3020
3.0 3.7 1.0 (3rd band) Cd 0.0039 0.2423 0.0094 0.3258 1.946 34.31 0.045

0.3491 Ca 0.0 0.1304 0.2388
4.0 3.3 1.0 (3rd band) Cd 0.0031 0.2654 0.0050 0.3490 1.936 33.45 0.035

1 For the definition of /  and G, see Eq. (11c) and (21), respectively.

Table 3. Knight shift (experimental and theoretical), spin 
densities at the nuclear sites, and Pauli susceptibilities for 

CaCd and CaTl.

Alloy CaCd CaTl

Nucleus considered 113Cd 205T1
Spin density at the

nucleus considered 0.34 a.u. 0.44 a.u.
Spin susceptibility 2.03 1.3 e.g.s. volume

units x 10“ 6
Knight shift at the

nucleus considered 0.22 x IO“ 2 0.18 x 10“ 2 1
0.26 x 10~* 0.49 x IO“ 2 II

Measured Knight shift 0.38 x 10~ 2 1.67 x IO“ 2
1 Without relativistic correction.

11 Relativistic corrected values.

This was found by different authors doing Knight 
shift calculations 25_28. In the approximation used 
here, the following important contributions to the 
total Knight shift were not included: a) The elec- 
tron-electron interaction for the paramagnetic sus­
ceptibility 29- 30; b) The relativistic effects and the 
modification given by a self-consistent APW method 
in the band structure calculation; c) The orbital 
effects; d) The different kinds of core polarisa­
tions31, and e) The dependence of the Knight shift 
upon the chosen reference solutions as consequence 
of the chemical shift 32. The difference between our 
theoretical results and the experimental data is prob-
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ably due to the neglect of the terms mentioned 
above.

2. Discussion of the 113Cd-NMR in CaCd

The direct Knight shift K^d depends on the spin 
density at the nuclei and the density of states at the 
Fermi energy. We shall discuss both terms sepa­
rately and compare the calculated values with those 
of Cd metal.

For CaCd the Fermi energy lies in the energy 
range of the narrow d-like bands. These narrow 
bands cause a great density of states as is shown in 
Figure 6. We obtain 29 electrons per unit cell and 
per Ry for the density N (Ey) at the Fermi energy, 
while the corresponding value given by the free 
electron theory is only 13 electrons per unit cell 
and Ry. There are no d-bands in Cd metal near the 
Fermi energy. The band structure calculation of 
Kasowski 27 shows that in Cd metal at the tempera­
ture of zero degree Kelvin, N (Ey) is about 1.9 times 
smaller than the value given by the free electron 
model. Neither in this paper nor by Kasowski was 
the exchange enhancement factor for the suscepti­
bility investigated. Jena et al. 26 calculated for this 
factor a value of 1.17 for Cd metal using the theory 
of Silverstein 29.

The calculated spin density at the Cd nuclei in 
CaCd, given in Table 3, is very small because the 
s part of the square of the wave function for states 
at the Fermi surface is small. As shown in Table 2, 
the APW charge Qcd,o for these states is small 
compared with Qont » Q Cd,i ? and @ca,2 ? especially 
for states of the third energy band. The quantity 
(\xpk{Tv) |2) f ^  for CaCd is 130. In Cd metal, the 
spin density at the nuclear position is larger than in 
CaCd. Kasowski obtained 495 for (\if>k(Vv) |2 ) f  -Q-

The polarisation and relativistic effects are not 
enclosed in the values for the spin density discussed 
above. Jena et al. determined for the polarisation 
part of the Knight shift in Cd metal 10% of the 
direct portion of K s . Because the value for CaCd 
should be of the same order, the main correction to 
£ sd is probably the relativistic one.

To determine the relativistic effects in a first ap­
proximation, not the absolute value for the spin 
density but only the relative change £ of the density 
with reference to the free atom

f - d v i W P W I t M O ) ! 2 (25) 

is taken from the APW calculation.

!i/’a (0 )  2 is the electron density of an outer 
s electron of the atom. For K sd in Eq. (18), the 
absolute value of the spin density is transformed to 
the atomic hyperfine coupling constant of the s elec­
tron a ( s ) . K s d is then given by 23

I is the nuclear spin and /// the magnetic moment 
of the nuclei. The problem is the choice of 0 (5). 
For monovalent atoms 0 (5) can be obtained from 
the results of atomic beam experiments. Values for 
polyvalent atoms can be derived from measurements 
on excited ionic states 23. However, the value for Cd 
given by Knight is obviously too sm all33. For a(s) 
we chose, therefore, the corrected Hartree-Fock- 
Slater values of Bennett et a l .12, 34. These are cal­
culated values for 0 (5) or corrected densities of 
states according to the equation 23

a «  =  ^ | fL jy 'f i« B lv 'A (° ) lc 2 - (27)

In the densities | (0) ]c2 core polarisation and 
relativistic effects are enclosed by multiplying the 
Hartree-Fock-Slater densities j (0) Sfs with a 
scale factor. The corrected densities , Y'a (0) c2 f° r 
Cd and T1 are 13.3 a0~3 and 64.8 a0-3 , respectively.

The Knight shift of Cd at the temperature of zero 
degree Kelvin is 0.34% 35. Substituting the spin den­
sity and density of states calculated by Kasowski 27 
into Eq. (18), it follows =  0.221%. This value 
is about a factor of 1.55 smaller than the experi­
mental one. Considering the relativistic correction 
as described, the factor reduces to 1.3, which is in 
good agreement with the enhancement factor for the 
susceptibility given by Jena et al. 26 However, the 
density | ^ ( 0 )  |Sfs is a function of the electron 
configuration and the atomic potential.

In this paper the atomic electron density is cal­
culated using the program of Herman and Skill- 
m an 20. The unmodified Hartree-Fock-Slater poten­
tial and the electron configuration of Table 1 were 
used and |'Y;a (0 ) ! s f s  =  11-175 a0-3 for Cd and 
23.65 a0-3 for T1 was found. For CaCd the cal­
culated £ is 0.03. This is very small because the 
wave function of an atomic s electron has large 
portions of higher angular moments in the alloy and 
the states with larger s density are lying below the 
Fermi level. In Cd metal £ amounts to 0.16. The 
corrected value for K sd in CaCd is 0.26%, which is 
about a factor of 1.4 smaller than the observed one.
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For CaTl, the corrected spin density and the ener­
gy density at the Fermi energy are also calculated 
and given in Table 3, together with the calculated 
Knight shift. The value for K'lth is about a factor of
3.4 too small, although the relativistic correction is 
enclosed. As discussed below, in CaTl the relativistic 
effects cannot be taken into account by a simple 
correction factor.

lowered for the higher Fermi energy. Table 2 shows 
also that there are great differences between the 
values of the APW charges for-the second and third 
band. The s charge of Cd in the second band is 
about a factor ten larger than in the third band. It 
can be derived from Fig. 8 that the Fermi surface

3. Discussion of the Cd-NMR in CaCd — CaTl

Although it is not possible to verify the absolute 
value of the Knight shift, we assume that the shape 
of in C aC di^T l^ as a function of x is due to the 
variation of the direct part of the Knight shift. 
Starting with CaCd, the third partner in the alloy 
CaCdi-aTlz should not change the run of the elec­
tron bands. Only the position of the Fermi energy is 
shifting (rigid band model). The increase of the 
Tl concentration n CaCd] _ ,rTlx increases the va­
lence electron concentration VEC

VEC = 2 t 0. (28)

The increase of x results in a shift <»l the Fermi 
energy which can be calculated using Eq.- I ! <Vi or 
(17). The change of the Fermi energy affects 
twice. First, the density of states N (Ey)  changes, 
and second, the Fermi surface varies with x and 
therefore the spin density has to be averaged over 
other states.

K s is also a function of the volume of the unit 
cell Q.  This volume effect can be neglected for the 
system CaCdj _xTlj., because the maximum change 
of the lattice constants amounts to 0.4%

In CaCdi_ rTlj the Knight shift of the Cd-NMR 
has been measured in the range 0 5^ x £ 0.5. In 
the same range the VEC changes from 2 to 2.25 and 
the Fermi energy from 0.348 to 0.368 Ry. Figure 6 
shows that the density of states N  (E) increases in 
this energy interval from 29 to 34 electrons per unit 
cell and per Ry, whereas K f,(x) decreases from 0.38 
to 0.31%. This decrease of K B is due to the decrease 
of the s density at the Cd nuclei, which compensates 
the increase of the density of states. If the VEC 
varies from 2 to 2.25, mainly the d bands of Ca are 
filled, whereas the s and p density decrease.

In Table 2 the APW charges are listed for states 
near the Fermi surface for the two Fermi energies 
0.348 Ry and 0.368 Ry, respectively. If the cor­
responding states of each band for the two Fermi 
energies are compared, the values for Qcd.o are

Fig. 8 . First and second sheet of the Fermi surface for CaCd 
in the plane kz = 7 t / ^ a  of the Brillouin zone. Only a quarter 
of the surface is plotted. A, T, and Z are points of the Bril­
louin zone having the same symmetry as the corresponding 
points of Figure 3. The change of the Fermi surface with 
increasing valence electron concentration (VEC) is shown 

too.

of the second band (third band) decreases (in­
creases) with increasing VEC. Therefore, the s den­
sity at the Cd nuclei decreases with increasing VEC. 
The results of the calculation of K s(x) are given in 
Fig ire 9. For CaCd the theoretical curve K Sith 

/(.r) has the same slope as the experimental curve 
/ 'r 'l .  Also the s partial density of states of Cd

Fig. 9. Measured Knight shift Ks  and calculated Knight shift 
K  s,th of the 113Cd- and the 205T1-NMR in the system 

CaCdi -x  Tlx as a function of x.
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has the same shape as the function Kf tth . The change 
of K s as a function of x is small in the region
0 ^  x 0.5, because the s partial density of Cd has 
a broad peak in the corresponding energy range of
0.35 Ry (x =  0) and 0.37 Ry (x =  0 .5).

4. Discussion of the Tl-NMR

The Knight shift of the Tl-NMR in the quasi­
binary C aC d^jT lz has been calculated using the 
same method as for the Cd-NMR. Then the third 
partner in the intermetallic phases, Cd, reduces the 
VEC and consequently, the Fermi energy. Figure 9 
shows the disagreement between the calculated and 
the measured values of the Knight shift. K s of the 
Tl-NMR decreases with decreasing VEC, whereas 
the calculation yields an increasing Knight shift.
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