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The energy bands of ordered CaCd and CaTl have been calculated by the nonrelativistic aug-
mented plane wave (APW) method. The electron structure in the system CaCd1-;Tl; is deduced
from these calculations by using the rigid band model for the phases with 0<<z#<<1. The band
structures of CaCd and CaTl are similar to the valence bands of other phases of the CsCl-type.
From the energy eigenvalues the electronic density of states curve, the partial densities of states
curves, and the Fermi energy have been obtained. For states near the Fermi surface the spin density
at the position of the Cd- and Tl-nuclei has been determined.

The Knight shift Kg of the 13Cd-NMR and the 2°T]-NMR in the system CaCdj-;Tl; has been
calculated as a function of z. The slope of the curve Ks(z) for the Cd-NMR is equal for experi-
mental and theoretical results. The absolute value of the calculated Knight shift is about a factor of
1.4 too small. Only the direct term to the Knight shift has been calculated. Relativistic effects have
been included by a scale factor. It has not been possible to explain the shape of the function K (z)
for the TI-NMR, since a full relativistic APW calculation is necessary for CaTI.

Introduction

In the course of investigations of ternary inter-
metallic compounds the quasibinary system
CaCd;_,Tl, has been studied by X-ray diffraction.
The alloys of this system form homogeneous solid
solutions for all concentrations x: O <z < 1. They
crystallize with the space group 0O,-Pm3m and
one formula unit per unit cell (CsCl-type). Further-
more, concentration dependent nuclear magnetic
resonance (NMR) measurements were carried out on
these alloys using ''3Cd- and 25Tl-nuclei as NMR
probes. It was found that the Knight shift K of the
Cd- and TI-NMR varies continuously as a function
of 2. However, the functions K, = f(z) for the Cd-
and TI-NMR shifts have different slopes . The pur-
pose of this paper is a theoretical approach to the
interpretation of the experimental results.

Since the Knight shift K. depends on the wave
function density at the nuclei and the density of
states at the Fermi energy, band structure calcula-
tions for an interpretation of K =/(x) are desir-
able. The band structure calculations for the bound-
ary phases CaCd and CaTl have been done using
the non-relativistic augmented plane wave (APW)
method 3. From the calculated energy eigenvalues
the Fermi energies and the density of states have
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been determined. Finally, the Knight shift is analy-
sed. For the phases CaCd and CaTl the relativistic
contribution to K is estimated. To analyse K, along
the quasibinary section CaCd;_,Tl,, 0 <2 <1,
the rigid band model ¢ is used.

The band structures of several intermetallic com-
pounds of the CsCl-type have already been studied
using the APW method 578. The results of these
calculations were compared with optical data, with
measurements of the specific heats of the electrons,
and with the de Haas-van Alphen experiments. To
calculate the Knight shift®~!1, mostly the ortho-
gonalized plane wave method is used in the litera-
ture. The Knight shift in alloys was studied theo-
retically as a function of the mixing proportion by
applying the rigid band model ' 13 or the theory of
the Friedel oscillations 14716,

The Band Structure of CaCd and CaTl
in the Non-Relativistic APW Approximation

1. Potential and APW Wave Functions

For the calculation of energy states in solids by
the APW method, the real lattice potential for the
electrons in the crystals is approximated by the so-
called muffin-tin potential. In a model assumption
the crystal is separated into two regions (Figure 1).
In region I, spherical symmetric potentials are de-
fined around the sites of the atomic nuclei. These
atomic spheres do not overlap. The potential be-
tween these spheres in region II is taken to be a
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constant one (APW constant). Because of the high
symmetry of the crystals and the flat real potential
between the spheres, the muffin-tin potentials is a

Fig. 1. Muffin-tin potential in the (111) plane for the cubic

primitive structure. In region I the potentials are spherically

symmetric around the positions of the nuclei r, . In region II
the potential is a constant one.

good approximation for metals and alloys. Region I
is chosen as large as possible and, therefore, the
atomic spheres touch each other in the direction of
nearest neighbours. The radii of the atomic spheres

of region I are called APW radii R, .

The muffin-tin potentials have been obtained by
a) the coulomb potentials due to the nuclei and the
electrons of the central atom, b) by the spherically
symmetric part of the coulomb potentials due to the
14 nearest neighbours in the CsCl structure, and
¢) by the exchange potentials. The exchange poten-
tials are calculated in the free electron exchange

|
APW - function i
|

\
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approximation of Slater 17 (Hartree-Fock-Slater ap-
proximation).

If the zero of the energy scale is shifted to the
APW constant, the constant potential in region II
is zero.

In the muffin-tin approximation, the wave func-
tions in region II are plane waves

Pin(r) =exp{ik;r}, (1)

k,=k+ g.. (2)

k is the wave vector of the first Brillouin zone, g;

is a reciprocal lattice vector. Inside the sphere » the

wave functions can be expanded in spherical har-
monics Y,

oo 1 X N
pa(r) = 2 X aln Y, (2)uw(0.E) . (3)
120 m=—1
e=r-r,, (4)
0=0/0. (5)

The radial wave function u;(0,E) is the solution of
the radial Schrodinger equation in the muffin-tin
potential with the angular momentum [. E is the
energy of the state K being investigated. In the
APW scheme proposed by Slater 18, the function

(6)

@;1 in region [
©; =
. @11 in region 11

is made continuous at the boundary of region I and
IT by a proper choice of the coefficients a¥) . Ex-
panding the plane wave also in spherical harmonics
and in spherical Bessel-functions j;, it follows:

af =4 exp {ikir}  jo (ki R) Yiu(le) fuc (R, E) .

(7)
The continuous function ¢; is called an augmented
plane wave and is shown in Figure 2. The wave

/

radius p
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Fig. 2. Muffin-tin potential and APW function.
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function i (r) of an electron in the crystal with
wave vektor K is regarded as an expansion of the
APW functions:

yu (1) = (1/Nw) 2 v (1) . (8)

The coefficients v;=v(k;) are determined by a
variation procedure. Ny is the normalisation con-
stant and the summation is taken over the reciprocal
lattice.

Besides the energy eigenvalues, the charge outside
and inside the APW spheres can be calculated 1°.
To do so, the square of the wave function is inte-
grated over region II and I. For a crystal with a
cubic primitive unit cell, it follows 3

k Q 3
Qout Ne = UinAi;ia (9)
and
9
Q= -fl? Qs » (10)
with
Qi = = Zvv;Cl, (11)
Nk ij
respectively.

A, Cﬁf; and /,; are abbreviations for the following
expressions

2 4aR,? i . ;
Aij=0;— 21 o &P {ikir,} j, (ki R) K},
(11 a)
; 4xR2 . A
CH="g" (21+1)ji(k;R) P (k%)
exp{ik;r}, (11b)
B[ oul(o,E) 12
=i | Rwk,. B | % 119
K~k — k;. -

€ is the volume of the unit cell, d;; is the Kronecker
symbol and P, is the Legendre polynom.
If the normalisation constant Vg is chosen that

Qeout + Qi =1, (12)

we can interprete the APW charges Qﬁl and Q¥ in
units of the electron charge as fraction of the charge
of the state v inside and outside the atomic spheres.
Inside the sphere Q) represents the fractional charge
associated with the angular momentum [ It is
shown below that the Knight shift is approximately
a function of the charge Q. .

2. Computational Details jor the APW Calculations
Both phases, CaCd and CaTl, belong to the CsCl-

type. The first Brillouin zone is shown in Figure 3.

kZ
|
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M

Fig. 3. Brillouin zone for the CsCl structure.

For the free atoms with the electron configuration
of Table 1, the muffin-tin potential was constructed

Table 1. Values of parameters involved in the APW calcula-
tion for CaCd and CaTl.

Alloy CaCd CaTl
Structure type CsCl CsCl
Lattice parameter ! a 7.2521 a, 7.2793 a,
Volume of the unit cell 2 381.41 g3 385.72 ay®
Electron configuration Ca: 3p® 4s2 Ca: 3p® 4s?
Cd : 4d1° 5s2 Tl: 5d1° 6s2 6pt
APW constant —0.8635 Ry —0.9202 Ry
APW sphere radii R, Ca: 3.158 q, Ca: 3.004 a,
Cd:3.004g, TI:3.1584,

I @,=0.5292 A is the Bohr radius.

using the self-consistent Hartree-Fock-Slater wave
functions of Herman and Skillman 2°. The radii of
the APW spheres and the constant potential between
the spheres are given by the intersection of the single
potentials in the [111]-direction. In Table 1, the
values of the different parameters involved in the
APW calculation are given.

The summation of Eq. (8) is evaluated including
all wave vektors Kk; satisfying k; < kypax, where Ay,
is given by a condition proposed by Switendick 3

kumx Rs:6 () (13)

where R is the smaller APW radius of the different
atomic spheres. For a general K point the condition
(13) implicates 50 — 60 basis functions. Instead of
Eq. (13), the weaker condition k,x Ry=5 changes
the energy values up to 0.005 Ry for states at the
Fermi surface.

In the summation over [ in Eq. (3) all values of
[ up to lya =5 were included. For states near the
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Fermi energy, an upper boundary of [, = 12
changes the energy values less than 0.001 Ry. The
APW charges Q) vary under the same conditions
less than 4%. This variation can be neglected for
the analysis of the Knight shift data.

3. Bands of CaCd and CaTl
The APW calculations show that in CaCd and

CaTl the bands of the core electrons and the valence
electrons do not overlap. Therefore, in the following
only the valence and conduction bands are con-
sidered.

The eigenvalues of these bands have been ob-
tained for 35 non-equivalent wave vectors K in the
reduced zone, corresponding to 512 K points in the
full Brillouin zone. In CaCd six eigenvalues were
determined for each K. Assuming that the conduc-
tion bands of CaCd and CaTl are very similar in

Band Structure of CaCd and CaTl

the non-relativistic APW calculation, we have de-
termined only four bands in CaTl.

In Tables Al and A2, the energy values and the
multiplicities M (k;) are given for the 35 Kk vectors
k;. M(k;) is the number of states having the same
energy eigenvalue as K, . In Figs. 4 and 5 the bands
are shown along the principal symmetry lines (see
Figure 3). Throughout this work the APW scale has
been used. The APW constants given in Table 1
have to be added to all given energy values.

The calculated band structures of CaCd and CaT!
are qualitatively very similar. Only the points My’
and R, are lowered in CaTl. Because a relativistic
APW calculation is necessary for CaTl, the follow-
ing discussion is restricted to the bands of CaCd.

For a detailed discussion of the band shapes it is
useful to know the APW charges Q,k[ If Qa1 is

much greater for one band than the other Q) in Eq.

Table A 1. Energy bands of CaCd in the non-relativistic APW approximation. The wave vectors k; are given in units of
pp o

/4 a. M (k) is the multiplicity of the state k; .

To all energy values given in Ry the APW constant of —0.8635 Ry has to

be added.

k; M (k) 1st band 2nd band 3rd band 4th band 5th band 6th band
0 0 0 1 —0.0502 0.3830 0.3830 0.507 0.5072 0.5072
01 0 6 —0.0374 0.3789 0.3859 0. 5070 0.5020 0.5154
02 0 6 0.0003 0.3384 0.3918 0.4740 0.4740 0.5163
0 3 0 6 0.0607 0.2526 0.3974 0.4520 0.4520 0.5166
0 4 0 3 0.1191 0.1803 0.3981 0.4440 0.4440 0.5144
1 1 0 12 —0.0248 0.3795 0.3832 0.4809 0.4950 0.5109
1 2 0 24 0.0123 0.3459 0.3904 0.4536 0.4747 0.5100
1 3 0 24 0.0712 0.2623 0.3999 0.4420 0.4558 0.5100
1 4 0 12 0.1258 0.1947 0.4029 0.4347 0.4492 0.5104
2 20 12 0.0474 0.3575 0.3678 0.4365 0.4742 0.4985
2 3 0 24 0.1013 0.2893 0.3872 0.4292 0.4652 0.4961
2 4 0 12 0.1455 0.2356 0.4085 0.4142 0.4613 0.4973
3 3 0 12 0.1447 0.3169 0.3532 0.4244 0.4772 0.4857
3 40 12 0.1735 0.2959 0.3683 0.4117 0.4750 0.4833
1 4 0 3 0.1906 0.3460 0.3460 0.3852 0.4800 0.4800
1 1 1 8 —0.0124 0.3830 0.3830 0.4696 0.4940 0.4940
L 2 1 24 0.0241 0.3520 0.3907 0.4542 0.4624 0.4987
1 3 1 24 0.0814 0.2720 0.4012 0.4366 0.4582 0.5013
1 4 1 12 0.1327 0.2083 0.4118 0.4225 0.4594 0.5027
2 2 1 24 0.0583 0.3660 0.3691 0.4409 0.4607 0.4832
2 3 1 48 0.1110 0.2984 0.3857 0.4328 0.4705 0.4860
2 4 1 24 0.1531 0.2467 0.3951 0.4242 0.4777 0.4864
3 3 1 24 0.1535 0.3247 0.3481 0.4285 0.4774 0.4865
3 41 24 0.1823 0.3004 0.3592 0.4192 0.4894 0.4909
1401 6 0.1996 0.3380 0.3380 0.4006 0.4980 0.4980
2 2 2 8 0.0900 0.3720 0.3720 0.4352 0.4600 0.4600
2 8 2 24 0.1384 0.3192 0.3721 0.4488 0.4602 0.4820
2 4 2 12 0.1755 0.2752 0.3720 0.4522 0.4743 0.5068
3 3 2 24 0.1789 0.3359 0.3374 0.4509 0.4900 0.4900
3 4 2 24 0.2078 0.3076 0.3417 0.4505 0.4967 0.5339
4 4 2 6 0.2284 0.3220 0.3220 0.4457 0.5450 0.5682
3 3 3 8 0.2175 0.3270 0.3270 0.4985 0.4985 0.5080
3 4 3 12 0.2454 0.3088 0.3231 0.5005 0.5098 0.5244
4 4 3 6 0.2730 0.3080 0.3080 0.4900 0.5071 0.5460
4 4 4 1 0.3012 0.3012 0.3012 0.4431 0.4431 0.4431
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Table A 2. Energy bands of CaTl in the non-relativistic APW

approximation. The wave vectors k; are given in units of

/4 a. M(ks) is the multiplicity of the state k¢. To all

energy values given in Ry the APW constant of —0.9202 Ry
has to be added.

k, M (k) 1st band 2nd band 3rd band 4thband
000 i —0.1089 0.4170 0.4170 0.5605
010 6 —0.0965 0.4011 0.4196 0.5280
020 6 —0.0602 03272 0.4289 0.5020
030 6 —0.0044 0.2246 0.4354 0.4780
040 3 0.0391 0.1623 0.4355 0.4690
110 12 —0.0843 0.4010 0.4103 0.5048
120 24 —0.0487 0.3354 0.4170 0.4804
130 24 0.0057 0.2354 0.4303 0.4632
140 e 0.0468 0.1761 0.4436 0.4522
220 12 —0.0153 0.3528 0.3612 0.4692
230 24 0.0343 0.2662 0.3859 0.4605
240 12 0.0693 0.2150 0.4028 0.4488
330 12 0.0751 0.2991 0.3239 0.4519
340 12 0.1009 0.2709 0.3409 0.4360
440 3 0.1195 0.3090 0.3090 0.4115
111 8 —0.0724 0.4050 0.4050 0.4824
121 24 —I0.0375 0.3431 0.4136 0.4711
Lad 24 0.0156  0.2461 0.4285 0.4663
141 12 0.0548 10.1891 0.4398 0.4486
2 2-1 24 —0.0047 0.3629 0.3632 0.4648
231 48 0.0440 0.2757 0.3857 0.4674
241 24 0.0778  0.2253 0.3958 0.4584
33 d 24 0.0848 0.3081 0.3228 0.4589
341 24 0.1110 0.2758 0.3383 0.4471
441 6 0.1309  0.3070 0.3070 0.4274
222 8 0.0263 0.3680 0.3680 0.4321
232 24 0.0720  0.2988 03722 0.4692
242 12 0.1035  10.2530 0.3739 0.4850
332 24 0.1131 0.3204 0.3233 0.4717
342 24 0.1408  10.2860 0.3310 0.4822
4 4 2 6 0.1650 0.3020 0.3020 0.4751
333 8 0.1562 0.3170 0.3170 0.4573
343 12 0.1867 0.2939 0.3148 0.4467
443 6 0.2224 0.2950 0.2950 0.4071
4 4 4 1 0.2942  0.2942 0.2942 0.3154

(10), we shall call this band a p-like band of Cd.
If two or more Q,"l values are of the same order,
hybrid bands are obtained. Often electrons belong-
ing to atomic energy levels with the angular momen-
tum [ form [like bands in metals and alloys. In
CaCd the lowest band in the energy range E(I';) to
E(X,) is a s-like band of Cd. The band is similar
to the band of the free electron gas. Above E(X,)
up to E(R,5") this s-like band is hybridized with a
p-like band of Cd and a d-like band of Ca. Above
E(R,5'), CaCd has five d-like bands of Ca hybrid-
ized with s-like and p-like bands of Cd. Therefore, a
broad valence band between —0.05 Ry and 0.3 Ry
results. Above this value five narrow bands in the
range 0.3 —0.5 Ry for CaCd appear. An exception
are the states around the point X;. Near this point
the second band is far below 0.3 Ry. These are the

only states with a measurable s portion Qé‘a,o of
Ca. The non-relativistic calculations in CaTl yield
similar charge distributions.

Broad valence bands and narrow d-like bands are
also characteristic for other intermetallic compounds
with CsCl structure, such as f’-CuZn?®, f’-NiAlS,
[ -PdIn7, YCu8, and YZn 8, although the width and
the degree of hybridization of the d-like bands are
different for the individual alloys. In contrast to
CaCd and CaTl, in all the phases cited above the
d-like bands can be assigned to the d levels of the
different elements, e.g. in #’-PdIn the s-like valence
bands are hybridized with the 4d bands of Pd7.
The mathematical reason for the analogy of Ca and
a transition element in relation to the band structure
is the similar shape of the logarithmic derivatives
of the radial wave function wu;(R,,E)/u/(R,,E)
with [=0.1 and 2 as a function of E.

Density of States and Fermi Energy

The density of states n(E) is defined as the num-
ber of electrons (or states with spin degeneration)
per unit volume of the metal in the energy range
AE around E per unit range of energy. Histograms
can be constructed for n(E) using the energy values
of the states given in Tables A1 and A2 3! 22,

Because of the limited number of states k; being
considered, the shape of the histograms depends on
the energy intervals AE used 222, For calculations
done in this work we could not choose AE smaller
than 0.03 Ry. It is averaged over six different den-
sity of states histograms. For convenience, in Figs.
6 and 7 the densities of states V(E) per unit cell
and per Ry are shown,

N(E) =Qn(E) . (14)

The density of states for CaCd has two broad peaks
at about 0.0 and 0.15 Ry which are mainly due to
the 4 s band of Cd. The third peak at about 0.36 Ry
belongs predominantly to the d-like bands of Ca
hybridized with the p-like bands of Cd. As the band
structure, the shape of the density of states for CaCd
is very similar to the corresponding curve for YZn.
The density of states for CaTl has a broad peak at
about 0.05 Ry due to the 5s band of Tl. The second
peak at about 0.3 Ry and the ascent at 0.43 Ry
belong to the d-like bands of Ca hybridized with the
p-like bands of TI.

Besides the total density of states /N(E), partial
densities of states /NV,;(E) were calculated. These
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Fig. 4. Energy bands of CaCd for the directions in k space given in
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Fig. 5. Energy bands of CaTl for the directions in k space given in
Figure 3.
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Fig. 6. Density of states of CaCd given in electrons per unit ce]l and

per Ry. N, is the density of states calculated from the free electron

model. NV is the total density of states in the APW approximation. N, 7

are partial densities of states, which are a function of the atomic sphere
» and the angular momentum /.
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Fig. 7. Density of states of CaTl given in electrons per unit cell and

per Ry. N, is the density of states calculated from the free electron

model. NV is the total density of states in the APW approximation. N, ;

are partial densities of states, which are a function of the atomic sphere
» and the angular momentum /.
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densities depend on the angular momentum [ and
the atomic sphere ». The total density N(E) is the
sum of the partial densities of states,

N(E) =.ZE'N,.Z(E) +Nout - (15)
The main partial densities of states for CaCd and
CaTl are shown in Figs. 6 and 7. Except N, all
other partial densities of states are small compared
to the plotted ones. The first two peaks of the total
density of states of CaCd correspond to the maxi-
mum of the partial density of states Npg4 and the
third peak of N(E) corresponds to the maxima of
Neag and Npgs. In CaTl the partial densities have
a similar shape as in CaCd, but in CaTl the maxima
of the partial densities N1;; and N, » are lying at
the same energy value, whereas in CaCd the maxima
of Neg1 and N, » belong to different energy values.

To calculate the Fermi energy Er, N(E) is inte-
grated over E from the lowest energy value E(I';)
up to the total number of electrons per unit cell z,

E¢
[N(EYAE =z.

E(Ty)

(16)

In our approximation we count the number of states
given in Tables A1 or A2, respectively, from the
lowest energy value up to the boundary z,

~— 2M(Kk[E]) =z.

512 EZE,

(17)

For CaCd, z is equal 4 and the energy value of
E;=0.348 Ry is reached at the point &, =7(3,3,1)/
(4a) in the third band, where M[k;(0.348)] is 24.
For CaCd the Fermi energy lies in a range with
large p partial density of states of Cd and large d
partial density of Ca and small s partial density

of Cd.
Knight Shift
1. Calculation of the Knight Shift

For the theoretical discussion of the NMR mea-
surements, we assume that the Knight shift K, is
given by the hyperfine contact term 23

8x
st = ”3”’ Ip Q <!lluk (rv)|2>F » (18)
although K% is only the direct contribution to K.
7p is the Pauli spin susceptibility per unit volume.
(lypk(r,)?)r is the averaged direct spin density at
the nuclear site T, due to the conduction electrons
at the Fermi surface.

Band Structure of CaCd and CaTl 483

To calculate the square of the APW wave func-
tion, one starts with a spherical averaged radial
charge density of . By integrating r2wy* over

solid angles within each of the APW spheres ?

0 L ou, (0 E) lg
k S _}. .}, ). Vs ) dmidls (19
o, (L)) N» e V;v; Cz]l R,r ul(R,-, E) L )

follows.
The square of the wave function at the nuclear
position is given by

o) (0)
ye(r,) = o (20)
With
1 u; (o, E 2
Ci = e R).'lil((‘R,.;)Ef)} (21)
one gets:
j(i'k(rr).g:Qfo G /1:‘0, (22)

for G,;=0 for [=+=0. Only the s part of the wave
function is unequal zero at the nuclear site.

For the calculation of the susceptibility yp, the
Pauli expression 2* for non-interacting electrons was
chosen,

zp= pgin(E), (23)

where 1y is the Bohr magneton.

Equations (22), (23) and (14) yield a theoreti-
cal expression for K, as a function of the s-part of

the APW charge

8

rd
Ks,th = 3

N (Ep) (Q Gy [1%)p . (24)
Different regions of the Fermi surface give very
different average electron densities at the nuclear
position. Therefore, the evaluation of the mean value
requires calculations at a large number of K points.
The K states at the Fermi surface are given by the
intersection points of the curves E = E; and
E—=E (k) for different directions in K space. The
curve E=FE (k) was constructed from the energy
values given in Tables A1 and A2, respectively,
using the boundary conditions for the shape of the
energy bands. For the obtained K points at the
Fermi surface, the energies, the APW charges, the
values of I¥ and G % and the mean values of
Q% Gfo/l,'.‘o were calculated. Table 2 shows an ex-
ample of the k, = 72/4 a plane for two different Fermi
energies. The calculated values K&y, are given in
Table 3. The values of Kg,m are about two or three
times smaller than the observed Knight shift K.
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Table 2. Electron states near the Fermi surface in the plane k:=z/4 a of the k space for two different Fermi energies Ey .
The electron states are described by the k vektor in units of 7/4 @, by the energy value (in Ry), and by the band index.
The APW charges in the atomic spheres » and outside the spheres are listed too. The Fermi contact terms for these states
are given by K x =2.235X10—4 N(Er) Q% G/I and the direct part of the Knight shift by the mean value of K&.

a) Er=0.368 Ry and N (Ey) =34 electrons per unit cell and per Ry.

b) Ey=0.348 Ry and N (EF) =29 electrons per unit cell and per Ry.

a APW-charges
energy K

k (band) » Qf_o Qikv,l Onlr‘f.’ Qout It G1 Kkx10?
0.3702 Ca 0.0110 0.0460 0.5773

0.0 1.5 1.0 (2nd band)  Cd 0.0101 0.0720 0.0307 0.2502 1.972 35.24 0.137
0.3718 Ca 0.0125 0.0532 0.5697

1.0 1.6 1.0 (2nd band) Cd 0.0047 0.0805 0.0287 0.2474 1.952 35.60 0.066
0.3660 Ca 0.0479 0.0219 0.5362

2.0 2.0 1.0 (2nd band) Cd 0.0352 0.0997 0.0246 0.2278 2.000 31.82 0.468
0.3691 Ca 0.0587 0.0219 0.4936

2.0 2.0 1.0 (3rd band)  Cd 0.0157 0.1153 0.0220 0.2645 2.137 31.84 0.196
0.3610 Ca 0.0097 0.1011 0.3424

3.0 26 1.0 (3rd band)  Cd 0.0049 0.2117 0.0140 0.3095 2.006 34.42 0.064
0.3703 Ca 0.0 0.0764 0.4080

4.0 27 1.0 (3rd band)  Cd 0.0028 0.2105 0.0115 0.2830 2.055 35.28 0.037

APW-charges

energy

k (band) r 0:‘.0 Q:’v‘.1 052 Ogut 11 Gt Kk 102
0.3519 Ca 0.0345 0.0634 0.4417

0.0 1.9 1.0 (2nd band) Cd 0.0304 0.1126 0.0283 0.2861 2.034 33.75 0.326
0.3457 Ca 0.0423 0.0705 0.3827

1.0 21 1.0 (2nd band)  Cd 0.0332 0.1345 0.0291 0.3037 1.844 33.28 0.388
0.3459 Ca 0.0412 0.0648 0.4070

2.0 02 1.0 (2nd band) Cd 0.0326 0.1263 0.0292 0.2957 1.883 33.20 0.372
0.3492 Ca 0.0543 0.0522 0.3967

20 23 1.0 (2nd band) Cd 0.0398 0.1442 0.0229 0.2839 1.969 33.35 0.436
0.3481 Ca 0.0999 0.0481 0.2954

3.0 3.0 1.0 (3rd band)  Cd 0.0001 0.1966 0.0144 0.3410 1.923 33:17 0.001
0.3570 Ca 0.0023 0.1063 0.3020

3.0 3.7 1.0 (3rd band) Cd 0.0039 0.2423 0.0094 0.3258 1.946 34.31 0.045
0.3491 Ca 0.0 0.1304 0.2388

4.0 33 1.0 (3rd band) Cd 0.0031 0.2654 0.0050 0.3490 1.936 33.45 0.035

! For the definition of I and G, see Eq. (11¢) and (21). respectively.

Table 3. Knight shift (experimental and theoretical), spin
densities at the nuclear sites, and Pauli susceptibilities for

CaCd and CaTl.

Alloy CaCd CaTl
Nucleus considered 13Cd 205T]
Spin density at the
nucleus considered 0.24 a.u. 0.44 a.u.
Spin susceptibility 2.03 1.3 c.g.s. volume
units x 106
Knight shift at the
nucleus considered 0.22 x 102 0.18x 1021
0.26 x 10—2 0.49 x 10—21I
Measured Knight shift 0.38 x 102 1.67 x 102

I Without relativistic correction.
IT Relativistic corrected values.

This was found by different authors doing Knight
shift calculations 2725, In the approximation used
here, the following important contributions to the
total Knight shift were not included: a) The elec-
tron-electron interaction for the paramagnetic sus-
ceptibility 29-30;  b) The relativistic effects and the
modification given by a self-consistent APW method
in the band structure calculation; ¢) The orbital
effects; d) The different kinds of core polarisa-
tions !, and e) The dependence of the Knight shift
upon the chosen reference solutions as consequence
of the chemical shift32. The difference between our
theoretical results and the experimental data is prob-
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ably due to the neglect of the terms mentioned
above.

2. Discussion of the Y'3Cd-NMR in CaCd

The direct Knight shift K.* depends on the spin
density at the nuclei and the density of states at the
Fermi energy. We shall discuss both terms sepa-
rately and compare the calculated values with those
of Cd metal.

For CaCd the Fermi energy lies in the energy
range of the narrow d-like bands. These narrow
bands cause a great density of states as is shown in
Figure 6. We obtain 29 electrons per unit cell and
per Ry for the density N(Ey) at the Fermi energy,
while the corresponding value given by the free
electron theory is only 13 electrons per unit cell
and Ry. There are no d-bands in Cd metal near the
Fermi energy. The band structure calculation of
Kasowski 27 shows that in Cd metal at the tempera-
ture of zero degree Kelvin, N (Ey) is about 1.9 times
smaller than the value given by the free electron
model. Neither in this paper nor by Kasowski was
the exchange enhancement factor for the suscepti-
bility investigated. Jena et al.?% calculated for this
factor a value of 1.17 for Cd metal using the theory
of Silverstein 2.

The calculated spin density at the Cd nuclei in
CaCd, given in Table 3, is very small because the
s part of the square of the wave function for states
at the Fermi surface is small. As shown in Table 2,
the APW charge Q& for these states is small
compared with Q% , Qbay » and Qbas, especially
for states of the third energy band. The quantity
(|ypr(r,) 2)p Q for CaCd is 130. In Cd metal, the
spin density at the nuclear position is larger than in
CaCd. Kasowski obtained 495 for (|wx(1,)?)F Q.

The polarisation and relativistic effects are not
enclosed in the values for the spin density discussed
above. Jena et al. determined for the polarisation
part of the Knight shift in Cd metal 10% of the
direct portion of K.. Because the value for CaCd
should be of the same order, the main correction to

K.1is probably the relativistic one.

p y

To determine the relativistic effects in a first ap-
proximation, not the absolute value for the spin

density but only the relative change & of the density
with reference to the free atom

E=(lyn(r,)?)p/lpa(0)?
is taken from the APW calculation.

(25)
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"4 (0) 2 is the electron density of an outer
s electron of the atom. For K% in Eq. (18), the
absolute value of the spin density is transformed to
the atomic hyperfine coupling constant of the s elec-
tron a(s). K4 is then given by 3

1

de — Q —
< = 2e 2h up

Sa(s) .

(26)
M

I is the nuclear spin and ; the magnetic moment
of the nuclei. The problem is the choice of a(s).
For monovalent atoms a(s) can be obtained from
the results of atomic beam experiments. Values for
polyvalent atoms can be derived from measurements
on excited ionic states 23. However, the value for Cd
given by Knight is obviously too small 33. For a(s)
we chose, therefore, the corrected Hartree-Fock-
Slater values of Bennett et al.!? 3%, These are cal-
culated values for a(s) or corrected densities of

states according to the equation
161 u N _
a(s) = =3~ B um|ya(0) 2. (27)

In the densities :1;'_\(0)11-2 core polarisation and
relativistic effects are enclosed by multiplying the
Hartree-Fock-Slater densities |14 (0) fps with a
scale factor. The corrected densities |14 (0)'c2 for
Cd and TI are 13.3 a,” % and 64.8 a, ™3, respectively.

The Knight shift of Cd at the temperature of zero
degree Kelvin is 0.34% 35. Substituting the spin den-
sity and density of states calculated by Kasowski ?7
into Eq. (18), it follows K.,%=0.221%. This value
is about a factor of 1.55 smaller than the experi-
mental one. Considering the relativistic correction
as described, the factor reduces to 1.3, which is in
good agreement with the enhancement factor for the
susceptibility given by Jena et al.2® However, the
density EWA(O)I%IFS is a function of the electron
configuration and the atomic potential.

In this paper the atomic electron density is cal-
culated using the program of Herman and Skill-
man 2°. The unmodified Hartree-Fock-Slater poten-
tial and the electron configuration of Table 1 were
used and |y, (0)|frs=11.175a,"3 for Cd and
23.65 a2 for Tl was found. For CaCd the cal-
culated & is 0.03. This is very small because the
wave function of an atomic s electron has large
portions of higher angular moments in the alloy and
the states with larger s density are lying below the
Fermi level. In Cd metal & amounts to 0.16. The
corrected value for K4 in CaCd is 0.26%, which is
about a factor of 1.4 smaller than the observed one.
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For CaTl, the corrected spin density and the ener-
gy density at the Fermi energy are also calculated
and given in Table 3, together with the calculated
Knight shift. The value for Ky, is about a factor of
3.4 too small, although the relativistic correction is
enclosed. As discussed below, in CaTl the relativistic
effects cannot be taken into account by a simple
correction factor.

3. Discussion of the Cd-NMR in CaCd — CaTl

Although it is not possible to verify the absolute
value of the Knight shift, we assume that the shape
of K. in CaCd;_,TI, as a function of 2 is due to the
variation of the direct part of the Knight shift.
Starting with CaCd, the third partner in the alloy
CaCd; _,Tl, should not change the run of the elec-
tron bands. Only the position of the Fermi energy is
shifting (rigid band model). The increase of the
Tl concentration ‘n CaCd;_,Tl, increases the va-
lence electron concentration VEC

VEC=2 +05r. (28)
The increase of z results in a <hift o the Fermi
energy which can be calculated using Eg= (10} or

(17). The change of the Fermi energy affects K 2}
twice. First, the density of states N(Ey) chances.
and second, the Fermi surface varies with z and
therefore the spin density has to be averaged over
other states.

K, is also a function of the volume of the unit
cell 2. This volume effect can be neglected for the
system CaCd;_,Tl,, because the maximum change
of the lattice constants amounts to 0.4% 1.

In CaCd;_,Tl, the Knight shift of the Cd-NMR
has been measured in the range 0 <z <0.5. In
the same range the VEC changes from 2 to 2.25 and
the Fermi energy from 0.348 to 0.368 Ry. Figure 6
shows that the density of states N(E) increases in
this energy interval from 29 to 34 electrons per unit
cell and per Ry, whereas K (x) decreases from 0.38
to 0.31%. This decrease of K. is due to the decrease
of the s density at the Cd nuclei, which compensates
the increase of the density of states. If the VEC
varies from 2 to 2.25, mainly the d bands of Ca are
filled, whereas the s and p density decrease.

In Table 2 the APW charges are listed for states
near the Fermi surface for the two Fermi energies
0.348 Ry and 0.368 Ry, respectively. If the cor-
responding states of each band for the two Fermi
energies are compared, the values for Qa0 are
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lowered for the higher Fermi energy. Table 2 shows
also that there are great differences between the
values of the APW charges for the second and third
band. The s charge of Cd in the second band is
about a factor ten larger than in the third band. It
can be derived from Fig. 8 that the Fermi surface

2" sheet

1% sheet
< T Z

CaCd

CaCd

VEC20 =
VE(C2,25 -

4z A

A

—z

Fig. 8. First and second sheet of the Fermi surface for CaCd

in the plane k;=:/4 a of the Brillouin zone. Only a quarter

of the surface is plotted. A, T, and Z are points of the Bril-

louin zone having the same symmetry as the corresponding

points of Figure 3. The change of the Fermi surface with

increasing valence electron concentration (VEC) is shown
too.

of the second band (third band) decreases (in-
creases) with increasing VEC. Therefore, the s den-
sity at the Cd nuclei decreases with increasing VEC.
The results of the calculation of K (z) are given in
Fighre 9. For CaCd the theoretical curve K,
-=f(x) has the same slope as the experimental curve

S
S

K. -7V, Also the s partial density of states of Cd
Kelor o: 13¢d -NMR
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Fig. 9. Measured Knight shift K's and calculated Knight shift
K$w of the !13Cd- and the 2°TI-NMR in the system

CaCdq -z Tl; as a function of z.
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has the same shape as the function K&y, . The change
of K, as a function of z is small in the region
0 < 2 < 0.5, because the s partial density of Cd has
a broad peak in the corresponding energy range of
0.35 Ry (x=0) and 0.37 Ry (z=0.5).

4. Discussion of the TI-NMR

The Knight shift of the TI-NMR in the quasi-
binary CaCd;_,Tl, has been calculated using the
same method as for the Cd-NMR. Then the third
partner in the intermetallic phases, Cd, reduces the
VEC and consequently, the Fermi energy. Figure 9
shows the disagreement between the calculated and
the measured values of the Knight shift. K of the
TI-NMR decreases with decreasing VEC, whereas

the calculation yields an increasing Knight shift.
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